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Free vibrations of a drop in partial contact 
with a solid support 

By M. STRANI AND F. SABETTA 
Dipartimento di Meccanica ed Aeronautica, Universita ‘La Sapienza’, Roma, Italy 

(Received 25 July 1983) 

Under the assumptions of zero gravity, of negligible viscous effects and of small 
surface deformations, the problem of the axisymmetric free vibrations of a liquid drop 
immersed in an outer fluid and in partial contact with a spherical bowl has been 
analysed. Using the Green function method and expanding the velocity potentials 
in series of Legendre polynomials, the problem has been reduced to the solution of 
a single integral equation whose kernel has been expressed in analytical form. It is 
found that, in comparison with an isolated drop, constrained drops have an additional 
vibration mode which reduces to a zero-frequency rigid motion as the support size 
tends to zero, while the remaining ones approach the modes predicted by Lamb for 
a free drop. 

The vibration modes have been numerically calculated for different sizes of the 
supported surface and compared with the experimental results of Bisch, Lasek & 
Rodot (1982). 

1. Introduction 
One of the fascinating prospects offered by future space stations is the possibility 

of obtaining monocrystals of high pureness and homogeneity exploiting the micro- 
gravity environment. Crystal-growth experiments have already been performedduring 
Skylab and Salyut missions, and are planned for future Spacelab flights. 

I n  order to  grow pure crystals of high quality, it  is important to understand the 
influence of vibrations on the growing crystal. 

This problem may be reduced to the vibration analysis of a liquid drop in partial 
contact with a solid support representing the crystallized substratum. 

Free vibrations of liquid drops have been extensively investigated in the case of 
isolated spheres. The first basic results date back to Kelvin (1890) and Rayleigh (1894) 
for the inviscid case. Later, in the case of a liquid sphere of density pi surrounded 
by an outer fluid of density pe, both fluids being inviscid or slightly viscous, Lamb 
(1932) obtained the following expression for the frequencies of small-amplitude 
vibrations: 

n(n - 1 )  (n  + 1)  (n  + 2) 0- - w; = 
( n + l ) p i + n p e  R 3 ’  

R being the drop radius and u the surface tension between the two fluids. More 
recently t,he vibrations of isolated drops have been investigated in the full viscous 
case by Miller & Scriven (1968) and by Prosperetti (1980), while Foote (1971) 
extended the analysis to the case of large-amplitude vibrations. 

However, the behaviour of a liquid drop in partial contact with a solid surface has 
not been studied extensively. For the sake of brevity, in the following discussion, we 
will refer to such a configuration as ‘ a constrained-drop problem ’. 
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To our knowledge the only extensive investigation in this area has been performed 
by Bisch, Lasek and Rodot (Rodot, Bisch & Lasek 1979; Bisch, Lasek & Rodot 1982), 
who experimentally observed the axial vibrations of liquid drops lying on a 
cylindrical support with radius ro which could be varied independently of the drop 
radius. To simulate microgravity conditions they immersed the drop in an outer 
fluid having the same density, following the method first proposed by Plateau (1873). 
Besides the observations on the damping constants and on the amplitudes of 
oscillations, the main conclusion of their analysis is that the first resonance frequency 
turns out to be proportional to  R-2 instead of R-% as in the case of an isolated drop. 

However, since one would expect the behaviour of a constrained drop to approach 
that of a free drop as the support radius tends to zero, a question arises as to the 
validity range of the experimental correlation. In fact since the range of experimen- 
tally tested configurations was 0.14 < r,/R < 0.77 and the drop instability prevented 
further reduction of ro /R ,  the answer to the above question can only be given through 
a theoretical analysis. This is one of the aims of the present work. 

As mentioned above, the vibration modes of constrained drops have not yet been 
analysed on a theoretical basis. We should, however, mention the works of Benjamin 
& Scott (1979) and Benjamin (1981), where a similar problem, namely the oscillations 
in free-surface flows with constrained edges, has been analysed from a mathematical 
point of view. Following the main lines of the theory presented in the above-mentioned 
papers, the existence of an infinite sequence of real eigenvalues for the problem of 
constrained drops could be demonstrated and an estimate of their values could be 
given. However, the simple geometry of the constrained-drop problem suggests a 
different approach, which leads to an explicit form of the operators and reduces the 
problem to the solution of a system of algebraic equations. This method allows for 
a simple and accurate evaluation of the constrained-drop eigenvalues and eigenmodes 
in order to study their dependence on the relevant parameters of the problem and 
to make a meaningful comparison with experimental data. 

2. The mathematical model 
2.1. Mathematical formulation of the problem 

The free vibrations of a spherical drop, immersed in an immiscible fluid of different 
density and in partial contact with a solid support, are considered. A spherical polar 
coordinate system ( r ,  8, $) is adopted, and only symmetrical deformations of the drop 
with respect to the y-axis are considered. The resulting geometric configuration of 
the problem is indicated in figure 1. Gravity and viscous-dissipation effects are 
neglected. The inner and outer fluids are assumed to be incompressible, and only small 
vibrations of the free surface are considered, i.e. lz/RI 6 1 .  

In what follows the superscripts i and e will indicate quantities pertaining to the 
internal and external fluid respectively. The absence of the superscript indicates that 
a statement is applicable to both fluids. 

The velocity field is described by the potential q5, which satisfies the Laplace 
equation 

V2q5 = sin 6' (r2q5r)r + (sin 6'$@)@ = 0 

on gi = ( ( r ,  8 ) l O  < r d R, 0 < 6' < n}, 
ge = ( ( T ,  6')l R G r < + 00, 0 < 8 < n}, 

(2) 

i (3) 

where account has been taken of the assumed symmetry, and the definition of the 
domains 9 follows from the hypothesis of small free-surface deformations about the 
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FIGURE 1. Definition sketch. 

spherical shape. The pressure p ( r ,  6 ,  t )  may be obtained by the linearized Bernoulli 

(4) 
equation 

On the boundary portion a g S  = ( ( r ,  0 ) l r  = R, n-a d 6 Q n> where the drop is in 
contact with the support, we assume the normal velocity and the free-surface 
deformation Z ( 6 ,  t )  to be zero, that  is 

P = Po + P54. 

g r = o ,  z=o. (5 )>  (6) 

Moreover, on the free portion iWf = ( ( r ,  6 ) l r  = R, 0 d 6 d n-a} of the boundary, 
we shall impose the continuity of the normal velocity across the free surface, 

gr  = -2 t l  (7) 

and the dynamic balance of momentum along the drop radius, 

where the quantity between square brackets is the local curvature of the deformed 
free surface. An integral condition on the free-surface shape is moreover given by the  
conservation of the drop mass, that is 

By considering periodic motion we can set 

6 = H r ,  @ ) e i w t ,  = Z( t ) j e i (wt++) ,  (10% b)  

where the 
tion (7).  

phase angle between 9 and Z is consistent with the boundary condi- 
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By substituting (10) into (8) and by equating the real parts, one easily finds 

that is, the well-known Laplace formula for the unperturbed spherical drop. 
The system (‘2)-(9), on account of (10) and ( l l ) ,  gives 

(12) V 2 p , = 0  on 9, 

Vr = ox, o(pig3-pep)e) = -- (sin 8 zs)s+ 2x1 on ag*, 

pT=O, z = O  on ZP, 

Izs inOdO = 0. 

13a, b )  

14a, b )  

Equations (12)-( 15) determine aneigenvalue problem, whichisreducedin§§2.2-2.6, 
to a more compact form, which enables the use of a simple approximate numerical 
method of solution. 

2.2.  The solutions for inner and outer potentials 

It is convenient to introduce the variable p = cos 8. If z(p) is a given function in the 
space L2( - 1,l) of square-integrable functions which satisfies the conditions (146) and 
(15), the problem (12), (13a), (14a) is easily recognized to be equivalent to  the 
Neumann problem 

V2cp=0 on 9, 

q + = o z  on d 9 ,  

qe+0 as r - f c o ,  

whose solution is shown, by standard methods, to  be 

Here P,(p) is the kth Legendre polynomial, q,, a constant to be determined in the 
following, and the coefficients P ) ~  are given by 

where 

denotes the inner product in L2( - 1, 1 ) ,  and (Pk, Pk) = 2 / ( 2 k +  1). 

2.3. Integral equation for the surface deformation 
The unknown free-surface shape satisfies the differential equation (13b) which under 
the change of variable p = cos8 becomes 
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with the boundary condition 
z ( a )  = 0. 

The solution of (17) may be easily found by the use of the Green-function method. 
In  fact, whenf(p) = 0 (17a)  has the following two independent solutions: 

The solution of (17) may thus be expressed as 

1 

z(p) = j' G ( p , 7 ) f ( 7 ) d 7  for a Q p Q 1, (19a) 

where the symmetric Green function G(p,  7) : [a,  11 x [a, 11 + [w is given by 

When a --f 0 or a+- 1 the Green function diverges. These two cases will be discussed 

The function z(p), as given by (19a), is such that 
later. 

lim z ( p )  = 0. 

When - 1 < p < a the boundary condition (14b) gives z(p) = 0. Equation (19a) may 

p+a+ 

then be replaced by 1 

z(p) = j' G(Pu, 7 ) f (7 )  d7, (20a) 
-1 

where G(p, 7) : [ - 1,1] x [ - 1,1]+ R is the extension of G (p, 7) defined by 

2.4. The eigenvalue problem 

On account of (16) we may evaluate the functionf(7) appearing in (20a) as 

where 

and 

Equation (20a), after substitution of (21 a ) ,  becomes 



238 M .  Xtmni a,nd F .  Sabetta 

The constant vo is now determined by imposing the condition on the conservation 
of the total drop volume. By substituting ( 2 2 )  into (15), in fact, we obtain 

and (22)  is then reduced to the form 

where K(p,  u) is given by 

In  order to reduce (24) to an infinite system of linear algebraic equations we expand 
z (p )  and K ( p ,  n) in the Legendre-polynomial series 

and 

where the Po(p) term has been dropped as a consequence of (15). The coefficients Khl 
may be evaluated from t,he corresponding ones of the expansion 

(26a) 

where, on account of the definition ( 2 0 b ) ,  

In fact, the substitution of (26) and of the expansion (21 c) for r(7, (T) into (24b) results 
in 

On account' of ( 2 5 ) ,  (24a)  finally gives 

which, by setting 

is equivalent to 
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where 

A,,  = Ah, = 2 ( v -  Ghl 2h+ 1 (29c) 

2.5. Solution procedure 
The coefficients Gtk (i, k = 0 ,1 ,2 ,  . . .), and hence, by the use of (29c), the coefficients 
A,,  (1,  h = 1,2 ,  . . .), have been calculated on the basis of well-known properties of the 
Legendre functions of first (Pk(,u)) and second (&&A)) kind. 

In fact, by substituting (19b) into (26b) we obtain 

When K =+ 1 the expression (30) may be simplified by the use of the identities 
(MacRobert 1967) 

After some straightforward algebra one then obtains, when k =+ 1 ,  

r i  

which may be easily evaluated analytically; while, when i = k = 1 ,  (30) gives 

1 7-6ln2 a3 a - _ _ _  
12 12 4 '  

G,, = i ln( l+a)--+ 
4a 

2.6. The eigenvalue problem for a = - 1 and a = 0 
Where a = - 1 or a = 0 the Green function (19b) diverges. Therefore the analysis of 
the eigenvalue problem (12)-( 15) may no longer be accomplished in the function space 
L2( - 1 ,  l ) ,  but must be done in different function spaces (Benjamin 1981). 

A mathematical analysis of these cases is outside the purposes of the present work. 
It is nevertheless possible to analyse the behaviour of the operator d' and of its 
eigenvalues as a-20 and a+- 1+. 

The first case is relatively simple. I n  fact, as shown in the Appendix, the 
lim Ah,  exists and is finite. The singularity for a = 0 is thus easily dropped by 

setting 
a+o 

= lim da. 
a+o 
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The same cannot be done when a = - 1. I n  fact, from (30) we get, by using 
well-known properties of the Legendre polynomials, 

26i1 26,k 
( -  l )k - -+ - 

( 2 i + 1 ) ( 2 E + l )  3 2 k + l  
4 2 - k ( k +  1 )  ' 

lim Gik = 
a+1+ 

while G,, diverges as In (1 + a )  when a + - 1. 

is 
The matrix A%, has therefore, in the limit a+- 1, an ' arrow-shaped ' structure, that 

A,,-t+00, 

k(E+ 1)-2 = 

( h  =k 1). 
1 

The following behaviour of the eigenvalues and eigenvectors of the matrix At, can 
thus be seen: 

hl++ 00, X ; + s l k ,  Z;+Slk, (34a) 

The first eigenmode thus tends to  the first Legendre polynomial with a frequency 
wl+O, that is to a rigid displacement of the drop, while the remaining eigenmodes 
and eigenvalues tend to the corresponding ones for the drop in absence of the solid 
support (Lamb 1932). 

We can thus argue that the solid support, besides the modification of the 
frequencies and of the modes with respect to the case of the unrestrained drop, 
introduces a new low-frequency mode, which tends to a zero-frequency rigid 
displacement as the amplitude of the supported portion of the drop reduces to zero. 

3. Results and discussion 
The first four computed eigenmodes for three different values of the characteristic 

parameter p = r,/R are coinpared in figure 2 with the eigenmodes of the isolated drop 
and with the drop configurations experimentally observed by Bisch et al. (1982). The 
liquids used in this experiment were benzene and carbon tetrachloride in water, 
having a viscosity of 0.9 and 1 cSt respectively. The low values of the viscosity 
makes the comparison with the present inviscid results meaningful. In  spite of the 
different geometry of the support (a cylinder in the experiments and a spherical bowl 
in the calculations) a close resemblance is observed between the experimental (figure 
2 a )  and the computed (figure 2 b )  configurations having the same value of p. As the 
support radius tends to zero we observe a significant change of the calculated drop 
shape, which approaches (figure 2 d )  the configuration of a freely vibrating drop (figure 
2e) (Lamb 1932), as was anticipated in $ 2 .  

It should be noticed that the first vibration mode for the free drop corresponds 
to the second one (n = 2) of the constrained drop. In  fact, for n = 1 the first mode 
of the constrained drop reduces, as p+O, to a rigid zero-frequency displacement (see 
92.6). 
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a 

FIGURE 3. Non-dimensional frequency w i  versus the support angle a for 12 = 1, 2, 3, 10. 

A second remark concerning the vibration modes is the surprising similarity that 
can occur between the shapes of drops having different wavenumber and different 
p-values, as can be observed in figure 2, comparing the configurations (a )  for n = i 
with the configurations ( e )  for n = i+ 1 ,  i = 1, 2, 3. 

This fortuitous and misleading similarity has probably led Bisch et al. (1982) to 
compare the first resonance frequency that they detected experimentally with the 
n = 2 Lamb’s frequency, while the correct comparison must be done between 
vibration modes having the same wavenumber. 

This remark is also confirmed by the results reported in figure 3, where the 
computed non-dimensional frequency 

is plotted versus the angle a = sin-lp. 
It may be observed that when a+n all frequencies tend to infinity. From a 

geometrical point of view, however, the case of a > in may be more appropriately 
considered as a spherical meniscus rather than a constrained drop. On the other hand, 
when a+O all the constrained drop frequencies approach the values predicted by 
Lamb’s theory. 

We thus observe that the solid support increases the resonance frequency for a given 
wavenumber, but introduces an additional low-frequency mode. It follows that the 
first resonance frequency, for low values of the ratio of support to drop radius, may 
be even smaller than the first, for the free drop, a fact that may be of practical 
importance in the applications. 
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FIGURE 4. Comparison between experimental and present results for the 
first resonance frequency. 

It may finally be pointed out that, even if not evident from the representation of 
figure 3, in the neighbourhood of a = 0 all curves have a vertical slope. This behaviour 
can be better observed in figure 4, where the first vibration frequency is plotted on 
a different scale and compared with the experimental results of Bisch (private 
communication 1983) using two fluids with viscosities of 4.4 and 1 cSt respectively. 
For values of a up to 40" the agreement with the experimental results is quite 
satisfactory, particularly if we consider that the present theory is based on the 
inviscid assumption. I n  fact, as shown by Prosperetti (1980) for the free drop, the 
effect of the viscosity is to  reduce slightly the values of the resonance frequencies. 
On the other hand, an increasing disagreement between the theoretical and experi- 
mental results occurs a t  larger values of the angle a, which seems to indicate the 
departure of the actual behaviour of the drop from the simple mathematical model 
here proposed. A deeper investigation and further experimental evidence in the range 
of large values of a is required to  clarify this behaviour. 

To analyse the frequency dependence on the drop radius for a given support, 
dimension we introduce the non-dimensional frequency 

The logarithmic plot of figure 5 indicates that  a correlation form like 

01 = aR-Y 

may be assumed with a constant y value only in a limited range of R-values. I n  fact 
for R+ co (i.e. a+O) the coefficient y tends to the value $ predicted by Lamb's theory 
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FIGURE 5. Logarithmic plot of the non-dimensional frequency w i  versus Rlr ,  a t  n = 1, 2,  3. 
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FIGURE 6.  Nodal-circle position for n = 1 versus the support angle a. 
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for a free drop, while for R = ro the coeficient y has an infinite value. In  the range 
of R where experiments have been performed (i.e. 1 . 3 ~ ~  < R < 7r,)  the computed 
y-value ranges between 1.75 and 2.9 consistently with the value of 2 proposed by 
Bisch et al. (1982). 

A further comparison with the experimental results may be done considering the 
nodal circle position of the first eigenmode. Bisch (1982) has experimentally observed 
that the nodal circle position defined by the angle eN indicated in figure 1 is related 
to the angle a by the very simple relation 

0, = ;@-a). 

This correlation together with the experimental results is compared in figure 6 with 
our results. The agreement is shown to be satisfactory except for very small values 
of the a-angle, where the computed curve exhibits the same behaviour observed in 
figure 3 for the frequency. 

On account of the mass conservation, this behaviour is connected to  the fact that 
when a x 0 the shape of the perturbed surface has not a linear variation with the 
support size, as i t  is shown by the shape of the small stalk in figure 2(d) .  Even for 
very small values of a the continuity of the function makes the eigenmode very 
different from the discontinuous solution that would occur at a = 0. I n  the latter case 
in fact the first eigenmode would be zero along all the drop surface, with the exception 
of the contact point, where i t  would have a finite value, giving rise to a tadpole-shaped 
drop. Consequently the fulfilment of condition (15) requires a displacement of the 
nodal circle that  can have finite values even for infinitesimal values of a. The same 
interpretation may be used to  explain the vertical slope for a = 0 of the eigenvalues 

We finally discuss the influence on the resonance frequencies of the outer fluid 

If we indicate by w i  the frequencies for pe = 0, the expression (1) for the free drops 

curves of figures 3 and 4. 

density pe.  

may be written in the form 

The same quantity r has been computed and plotted in figure 7 for different values 
of the wavenumber and of the angle a. It is shown that in all conditions 7 varies 
linearly with the density ratio and that the slope yn increases both with n and a. It 
may therefore be conchded that, for a constrained drop, an increase of the outer fluid 
density gives rise to a frequency reduction larger than that for a free drop. 

The authors wish to thank Dr Christian Bisch, who proposed the problem and has 
kindly supplied the experimental results. 

Appendix 

and to be finite. 
I n  this appendix, the limit as a+O of the coefficients A,, in (29c) is shown to exist 

We have 1 p e 1 1 p e 1  t 
-+--- +7- 

(A 1) 
h p l h + l k  p ' k + l  ' h0  GkO 

a t 0  1 i m A h k = 2  ( 2 h + l  2k+1 ) ! z ( T - G h k )  
and 
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6 /  

Pelp i  

FIQURE 7 .  Influence of the outer to inner density ratio on the function r = (o,/w",-z 

An expansion in a Taylor series of the quantities aGhk near a = 0 results in 

r P I  1 pk(0) J, p1(7) '7 (2h+ 1 )  (2k+ 1)  
4 k ( k +  1)-2  

aGhk = 

when k =+ 1 ,  and in 
aGll = :[ -$+&( 7 - 6 In 2)  a + O(a2)] .  

It follows that, for each h and k ,  

-aGhk) = 0, 
a = o  

and that the derivative of the above quantity a t  a = 0 is finite, thus showing the 
existence of a finite value for the limit in (A 2) .  

For completeness we list here the explicit expression that is found for these limits : 

P l  Pl fl 1 
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when k =I= 1 ,  and 
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(A 4b) 
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